Theropoda

Z Encyklopedia Dinozaury.com
Wersja z dnia 18:02, 5 sty 2015 autorstwa Nazuul (dyskusja | edycje) (+Tachiraptor, zmiany w "celofyzoidowa ?faza")
Skocz do: nawigacja, szukaj

Autorzy:
Maciej Ziegler, Dawid Mika


Nomenklatura

  • Theropoda (Marsh, 1881)
Allosaurus fragilis ~ Morosaurus impar (zmodyfikowano z Kischlat, 2000)
>Herrerasaurus ischigualastensis ~ Liliensternus liliensterni v Plateosaurus engelhardti (zmodyfikowano z Langer, 2004)
<Herrerasaurus ischigualastensis & Staurikosaurus pricei (zmodyfikowano z Novas, 1992)
Do tak definiowanego kladu mogą należeć niemal wszystkie teropody (Nesbitt i in., 2011).
> I kość śródstopia niestykająca się z dystalnymi kośćmi stępu (Passer domesticus) (zmodyfikowano z Paul, 2002)
Jest to klad o zasięgu bardzo zbliżonym do Neotheropoda, teoretycznie lecz szerszym: Tawa ani Eoraptor (zob. #Novas i in., 2011) wydają się nie być członkami tego kladu, ale celofyzoidy już tak. W macierzy Sereno, gdzie Tawa jest celofyzoidem (opublikowanej w Martinez i in., 2011), nie ma tej cechy.
<Coelophysis bauri & Passer domesticus (zmodyfikowano z Sereno, 1998)
Bakker pierwotnie użył tej nazwy dla określenia teropodów bardziej zaawansowanych od Podokesauridae (?=Coelophysidae, zob. artykuł o Coelophysoidea).
>Dilophosaurus wetherilli ~ Coelophysis bauri v Ceratosaurus nasicornis v Allosaurus fragilis (Holtz, 2012)
<Ceratosaurus nasicornis & Allosaurus fragilis (Ezcurra i Cuny, 2007)
Pierwotna definicja Paula jest bardzo problematyczna: > dodatkowe okno w kości szczękowej (promaxillary fenestra) (Dromaeosaurus albertensis). Homologia tego okna jest jednak trudna do stwierdzenia, gdyż obecność otworów jest prawdopodobnie wysoce homoplastyczna. Taki otwór obecny jest np. u Herrerasaurus, Sanjuansaurus, Eodromaeus, "Megapnosaurus" kayentakatae, Zupaysaurus, Pampadromaeus (dół) i Heterodontosaurus ale nie u Eoraptor, Daemonosaurus, Tawa i Megapnosaurus rhodesiensis. Wg Martineza i in. (2011) jest to synapomorfia Theropoda, utracona u celofyzoidów.

Charakterystyka

Ewolucja: pierwsze teropody

Szkielet Eoraptor. Autor: Scott Hartman [1].
Rekonstrukcja Eoraptor. Autor: Jakub Kowalski [2].

Teropody należą do dinozaurów gadziomiednicznych (Saurischia), a ich najbliższymi krewnymi, jak już wynika z definicji filogenetycznej, są zauropodomorfy, z którymi tworzą grupę Eusaurischia. Prawdopodobnie przodkowie teropodów były mięsożernymi, dwunożnymi zwierzętami a hipoteza, że byli wszystkożerni i być może fakultatywnie czworonożni, jest minimalnie mniej prawdopodobna (Nesbitt i in., 2010; Barrett i in., 2011). Możliwe, że pierwsze teropody były pokryte protopiórami, odziedziczonymi po przodkach.

Prawdopodobne teropody

Pozycja filogenetyczna domniemanych wczesnych teropodów - herrerazaurów, Eoraptor i Guaibasaurus - pozostaje kwestią sporów; herrerazaury mogą być bazalnymi gadziomiednicznymi a dwa ostatnie - zauropodomorfami (albo być bardziej bazalne).

Cechy łączące niewątpliwe teropody z herrerazaurami i eoraptorem często uważa się za wynikające z podobnego sposobu odżywiania (drapieżności), lecz należy zauważyć, że także wiele z nich nie wynika jedynie z podobnego trybu życia.

Szczegóły budowy

Synapomorfie obszernego - zawierającego herrerazaury - Theropoda to (głównie za Nesbitt i in., 2009; gwiazdką oznaczono obecne u eoraptora):

- wgłębienie w kości klinowej podstawowej* (u eoraptora płytsze niż u Eodromaeus i Neotheropoda - Sereno i in., 2013),
- staw panewkowy żuchwy ulokowany na poziomie dorsalnej krawędzi kości zębowej*,
- ostre, zakrzywione, spłaszczone bocznie i ząbkowane zęby,
- nierozrośnięte środkowodystalnie korony zębów,
- wydłużone prezygapofyzje na dystalnych kręgach ogonowych,
- skrócona kość ramieniowa (poniżej 60 % długości udowej)*,
- stykające się (lecz nie zachodzące na siebie) proksymalne końce kości śródręcza*,
- głębokie i asymetryczne wgłębienia prostownika na proksymalnodorsalnej części I-III kości śródręcza (u eoraptora na I i II kością są płytkie, na III są płytkie lub nieobecne - Sereno i in., 2013),
- trzon IV kości śródręcza znacznie węższy niż u pozostałych*,
- wydłużone końcowe paliczki dłoni,
- środkowobocznie cienka dystalna krawędź kości łonowej,
- kłykieć boczny (strzałkowy) proksymalnej części kości piszczelowej na poziomie środkowego kłykcia na jego tylnym obrzeżu*
- staw śródżuchwowy, dzięki sporemu (~15 stopni w górę i w dół) zakresowi ruchu ułatwiający prawdopodobnie łapanie zdobyczy, obecny u neoteropodów i herrerazaurów i słabiej rozwinięty u eoraptora (Sereno in., 2013). Staw mógł pomagać w połykaniu dużych ofiar lub amortyzować uderzenia.*
Rekonstrukcja szkieletu Herrerasaurus. Autor: Scott Hartman [3].
Rekonstrukcja Herrerasaurus. Autor: "pilsator" [4].

Herrerasauria

Pozycja filogenetyczna Herrerasauria wśród dinozaurów jest niepewna - prawdopodobnie są bazalnymi przedstawicielami Theropoda lub Saurischia. Niektóre podobieństwa do teropodów mogą wynikać z podobnego sposobu odżywiania - kwesta ta wymaga bardziej obszernych badań. Wśród nich wyróżnią się jeszcze Herrerasauridae. Herrerazaury występowały prawdopodobnie w obu Amerykach, w Indiach oraz w Europie, choć jedyne niewątpliwe szczątki pochodzą z Ameryki Południowej a fragmentaryczne także z Polski (Niedźwiedzki i in., 2014). Te drugie są najmłodszymi niewątpliwymi znaleziskami Herrerasauria (pochodzą ze środkowego-późnego noryku). Herrerazaury miały duże głowy i były niewątpliwe mięsożerne (w przeciwieństwie do eoraptora, który mógł być wszystkożerny). Koniec ogona był usztywniony, co działało stabilizująco podczas biegu (podobnie jak u tetanurów). Herrerazaury łączą następujące cechy: brak wyraźnego zagłębienia dla przyczepu mięśnia caudifemoralis (rewersja ze stanu stwierdzonego u kladu Silesauridae+Dinosauria, obecne też u zauropodomorfów bardziej zaawansowanych od Saturnalia), brak rowka na grzbietowobocznej powierzchni bliższej części kości kulszowej (rewersja ze stanu stwierdzonego u Dinosauria lub obecnego już wcześniej) i obecność półki przedniego kłykcia proksymalnej do czwartego kłykcia na kości udowej (miejsce przyczepu dla mięśnia iliofemoralis externus; obecne też u celofyzoidów) (za Nesbitt i in., 2009). Teropody zaliczane do Herrerasauria mogą tworzyć grad (Nesbitt, 2011).

Ewolucja: Neotheropoda

Rekonstrukcje bazalnych i problematycznych neoteropodów: Sinosaurus triassicus/Dilophosaurus sinensis (dilofozauryd [w Coelophysoidea lub poza] lub tetanur), Coelophysis (celofyzoid), Liliensternus i Dilophosaurus (celofyzoidy lub bardziej zaawansowane neoteropody). Autorka: Edyta Felcyn.
Rekonstrukcja szkieletu bazalnego neoteropoda (?dilofozauryda) lub tetanura Cryolophosaurus. Autor: Scott Hartman [5].
Czaszka Dilophosaurus. Autor: Jaime Headden [6].
Rekonstrukcja Dilophosaurus. Autor: Vladimir Nikolov [7].

Ponad wszelką wątpliwość do Theropoda należą trzy taksony - rodzaje Daemonosaurus, Eodromaeus oraz grupa Neotheropoda (Tawa może być neoteropodem - Martinez i in., 2011 a wg niepublikowanych danych - bazalnym herrerazaurem na zewnątrz Theropoda - Novas i Ezcurra, 2011). Wyróżnia się też klad Avepoda, do którego należą wszystkie znane neoteropody.

Szczegóły budowy

Charakterystyczne cechy neoteropodów to (za Nesbitt i in., 2009):

- cienki tylnogórny wyrostek kości przedszczękowej,
- wentralny wyrostek na tylnym końcu głównej części kości przedszczękowej,
- szew kości przedszczękowej i nosowej w kształcie litery W,
- głębokość wewnętrznej części okna przodoczodołowego dużo większa niż głębokość kości szczękowej poniżej wewnętrznej krawędzi okna przodoczodołowego,
- wewnętrzna gałąź opisthotic (= crista interfenestralis) zakryta przez najbardziej boczną krawędź kości bocznopotylicznej (exoccipital) w widoku od tyłu,
- pięć lub więcej kręgów krzyżowych (u dorosłych osobników - u młodych celofyzydów i Dilophosaurus są cztery),
- wklęsła proksymalna powierzchnia kości piszczelowej,
- skierowany dorsowentralnie, rozciągający się z proksymalnej powierzchni stawowej grzebień piszczelowy,
- najbardziej przyśrodkowa dystalna kość nadgarstka znacznie większa niż pozostałe dystalne kości nadgarstka,
- wystający wentralnie grzebień nadpanewkowy,
- obecność dużego dołu na wewnętrznej stronie zapanewkowej części kości biodrowej (dla przyczepu mięśnia caudifemoralis brevis),
- grzbietowa część kości biodrowej rozrośnięta dorsalnie (wyraźnie wyższa niż grzbietowa część obrzeży nadpanewkowej do styku kości łonowej i kulszowej),
- długi, rozciągnięty przed panewkę i kwadratowy przedni (przedpanewkowy) wyrostek kości biodrowej,
- wklęsły tylnoboczny brzeg dystalnej części piszczeli,
- wyraźny proksymodystalnie zwrócony grzebień na tylnej powierzchni dystalnej części piszczeli,
- spiczasta tylna odnoga dystalnej części IV kości stępu,
- kość skokowa zrośnięta z kością piętową,
- brak wyraźnie otoczonego i eliptycznego dołu za przednim wyrostkiem wstępującym na tylnej powierzchnia kości skokowej,
- I kość śródstopia nieosiągająca proksymalnej powierzchni II kości i przyłączona do jej przyśrodkowej strony

"Celofyzoidowa faza"; Dilophosauridae

Neoteropody dzieli się tradycyjnie rozłącznie na dwie grupy - Tetanurae i Ceratosauria (w których skład wchodzą celofyzoidy i ceratozauroidy). Jednak obecnie uważa się raczej, że celofyzoidy są bardziej bazalne od tetanurów i właściwych ceratozaurów (zob. też artykuł o ceratozaurach i poniżej). Neoteropody dzieli się więc na dwie nazwane grupy: celofyzoidy i awerostry (w skład których wchodzą tetanury i ceratozaury), między którymi plasuje się prawdopodobnie wiele form przejściowych.

Teropody przeważnie zaliczane do omówionego osobno Coelophysoidea (Coelophysidae, Dilophosaurus, Liliensternus) przez długi czas uważano za grupę monofiletyczną. Jednak większość nowszych analiz (Yates, 2005; Smith i in., 2007), zwłaszcza uwzględniające Tawa (Nesbitt i in., 2009 i oparte na niej; zawierające mniej taksonów Cau i in., 2012B i Lee i in., 2014 lokują Tawa poza Coelophysoidea, lecz Dilophosaurus wraz z Cryolophosaurus w tym kladzie) - prócz Martineza i in. (2011) (jednakże rodzaj Tawa staje się bardziej bazalny przy wydłużeniu drzewka o jedną jednostkę, co powoduje, że celofyzoidy nie są monofiletyczne)- wskazuje, że nie tworzą one kladu. Zatem charakterystyczna budowa tych zwierząt reprezentuje 'celofyzoidową fazę' rozwoju teropodów, np. budowa przedniej części pyska z wcięciem między kością przedszczękową a szczękową (związana być może z elastycznością kości czaszki lub przystosowaniem do sprawnego manipulowania małą zdobyczą; podobną strukturę szczęki ma zauropodomorf Pampadromaeus). Wiele cech uważanych za unikalne dla nich mają już formy prymitywniejsze (Eoraptor i szczególnie Tawa) a także te, które są prawdopodobnie bardziej zaawansowane (Zupaysaurus, Dilophosaurus).

Jeśli taksony zaliczane wcześniej do Coelophysoidea nie tworzą kladu, to bliższe awerostrom są prawdopodobnie dilofozaurydy (Dilophosauridae) (choć zob. [[#Cau_i_in..2C_2012B|kladogram z Cau i in., 2012B). Jest to nowo rozpoznana grupa, co do której monofiletyczności także nie ma pewności - Cryolophosaurus (wg analizy Smith i in, 2007 takson siostrzany Dilophosaurus) jest wg analizy Nesbitta i in. (2009) bardziej bazalny od dilofozaura (to samo dotyczy innego teropoda uznanego przez Yatesa za przedstawiciela tej grupy - Zupaysaurus). Z kolei skupiona na tetanurach analiza Carrano i in. (2012) wykazała, że Cryolophosaurus i "Dilophosaurus" sinensis są najbardziej bazalnymi tetanurami a Dilophosaurus jest celofyzoidem; taki sam wynik ma analiza Choiniere i in. (2010) i na niej oparte (np. Rauhut i in., 2012 (II); Lee i in., 2014(II)), które nie zawierają "D." sinensis. Wg Smitha i in. (2007) Dilophosauridae z awerostrami łączy 5 cech czaszki: tylnobrzusznie wydłużony oczodół, kości szczękowe prawie równoległe do siebie patrząc od tyłu, zredukowana liczba zębów w kości szczękowej, językokształtny wyrostek na kościach ciemieniowych pokrywający guz nadpotyliczny i relatywnie głęboka kość kątowa górna. Także same dilofozaurydy zdiagnozowano na podstawie cech budowy czaszki, konkretniej grzebienia tworzonego przez kości nosowe i łzowe (udziału wyrostka kości przedszczękowej w podłużnym i ostrym grzebieniu nosowym, samej obecności nosowo-łzowego grzebienia) i przedłużeniu dołu przedoczodołowego w bocznowewnętrzną stronę kości nosowej. Cechy te mogą być szerszej rozpowszechnione - Smith i in. użyli pięciu cech związanych z budową grzebieni - po ich rewizji przez Brusattego i współpracowników (2010A) i odrzuceniu dwóch z nich klad ten nie został uzyskany (zob. drugi kladogram z Langer i in., 2014). Jeśli taksony zaliczone przez Smitha i in. do tej grupy rzeczywiście tworzą klad, to są to teropody wczesnojurajskie (może też późnotriasowe), prawdopodobnie kosmopolityczne (znaleziono je w Afryce, Ameryce Północnej, Antarktydzie i Azji) i zadziwiająco podobne do siebie - wszystkie miały 6-7 m długości, smukłe, mocno wydłużone i niskie ciała, a na czaszkach fantazyjne ozdoby. Mniejsze lub większe grzebienie na czaszkach miały niemal wszystkie niecelofyzoidowe neoteropody (i może też celofyzoidy - "Megapnosaurus" kayentakatae; słabo rozwinięte miał Coelophysis), prócz tych, których czaszka została mocno zmodyfikowana (bezgrzebieniaste były Limusaurus, niektóre abelizaurydy i tyranozauroidy oraz przede wszystkim maniraptorokształtne celurozaury - wśród których niektóre znów wykształciły ozdoby).

Prawdopodobnie bardziej zaawansowany od dilofozaurydów jest Tachiraptor, choć analiza po uwzględnieniu rewizji Brusattego i in. (2010A) (zob. wyżej) wykazuje politomię ?dilofozaurydów, Tachiraptor i omówionego niżej, bardziej zaawansowanego kladu Averostra (Langer i in., 2014).

Ewolucja: Averostra

We wczesnej jurze miejsce prymitywniejszych teropodów zajęły bardziej zaawansowane ceratozaury (Ceratosauria) i tetanury (Tetanurae), należące do Averostra. Ich nazwa oznacza dosłownie "ptasie dzioby". Przynależność do awerostrów można zdiagnozować na podstawie wielu cech, m. in. (za Smith i in., 2007; nieznane u Tachiraptor):

- asymetryczne zęby kości przedszczękowej (pozbawione prostych stożków)
- brak otworu w kości kwadratowej,
- prezygapofyzy położone bocznie do kanału neuralnego w przednich kręgach szyjnych,
- łopatka nierozrośnięta znacznie na dystalnym końcu,
- wyraźny wewnętrzny "hak" na przedniej części kości biodrowej,
- szeroki, "skrzydełkowaty" mniejszy krętarz,
- zredukowana powierzchnia strzałkowa na kości skokowej,
- płaski wstępujący wyrostek skokowy.

Ceratozaury (Ceratosauria) to grupa teropodów znana głównie z kontynentów południowych. Bardziej zaawansowane z nich - abelizauroidy (Abelisauroidea) - dotrwały do końca kredy. Wyróżnia się wśród nich większe abelizaurydy (Abelisauridae) i mniejsze noazaurydy (Noasauridae).

Takson siostrzany ceratozaurów to tetanury (Tetanurae), dzielące się na dwie główne grupy. Pierwszą są wymarłe w późnej kredzie megalozauroidy (Megalosauroidea), zawierające spinozaurydy (Spinosauridae) i megalozaurydy (zwane też torwozaurydami - Megalosauridae/Torvosauridae). Drugą żyjące do dziś aweteropody (Avetheropoda, inaczej neotetanury - Neotetanurae), do których należą celurozaury i wymarłe w późnej kredzie karnozaury (Carnosauria) (pewne dane wskazują, że Megalosauroidea należą do Carnosauria, zob. szerokie Carnosauria; niepewną pozycję w Avetheropoda mają Megaraptora).

Celurozaury (Coelurosauria) były i są znacznie bardziej zróżnicowane niż ich należący do Carnosauria kuzyni. Bazalnymi celurozaurami były tyranozauroidy (Tyrannosauroidea). Bardziej zaawansowane od nich są maniraptorikształtne (Maniraptoriformes), dzielące się na dwie grupy - ornitomimozaury (Ornithomimosauria) i maniraptory (Maniraptora). Niepewną pozycję wśród nich mają alwarezzauroidy (Alvarezsauroidea). Maniraptory dzieliły się na kilka grup: terizinozaury (Therizinosauria), owiraptorozaury (Oviraptorosauria) i parawiale (Paraves). Wśród tych ostatnich wyróżnia się dromeozaurydy (Dromaeosauridae) i troodontydy (Troodontidae) i Avialae (ptaki). Wszystkie wyróżnione wśród celurozaurów grupy dotrwały do końca mezozoiku. Wymieranie kredowe przetrwały zaś jedynie niektóre z tych należących do Avialae.

Wymiary

[5 cm (Mellisuga helenae)], ?~30 cm (Eosinopteryx), ~43 cm (Parvicursor) < << 12,3-12,8 m (Tyrannosaurus)


Pierwsze teropody prawdopodobnie były małe (1-2 m długości, Nyasasaurus - 2-3 m), lecz niektóre bardzo szybko powiększyły rozmiary: (?Herrerasaurus 4-6 m; Gojirasaurus >5 m; późniejszy Liliensternus 4-6 m). Z późnego triasu znane są też tropy i szczątki teropodów wielkości Allosaurus (Sander i in., 2011). Prawdopodobnie z tej epoki pochodzą tropy teropodów mierzących ok. 8 m (tyle, co "duże Allosaurus") z Ameryki Południowej (formacja Caturrita o niepewnym datowaniu, karnik-retyk, może nawet wczesna jura; Costa da Silva i in., 2012). Jurajskie niecelofyzoidowe neoteropody były już całkiem spore - osiągały ok. 6-7 m. Gigantyzm i prawdopodobnie zdolność do szybkiego powiększania rozmiarów ciała cechuje wiele grup teropodów. Największe z nich były prawdopodobnie bliskie osiągnięcia maksymalnych rozmiarów, jakie może mieć zwierzę dwunożne. Zdarzała się także miniaturyzacja - lecz było to zjawisko rzadsze; nieptasi przedstawiciele omawianej grupy (podobnie jak inne dinozaury) nigdy nie zbliżyli się nawet do małych rozmiarów osiąganych przez wiele ptaków, ssaków czy łuskonośnych.

Największym (najcięższym) teropodem był prawdopodobnie Tyrannosaurus, choć bardzo zbliżony był Giganotosaurus (Hartman, online 2013 [8]); Spinosaurus był zapewne znacznie lżejszy niż Tyrannosaurus (Cau, online 2013 [9]).

Kiedy

232-230 (?? >242) Ma -> dziś

najstarsze:

 ?? "Thecodontosaurus" alophos >242 Ma
 ? Sanjuansaurus ok. 231,5-231 Ma
Eodromaeus od ok. 231 Ma

najmłodsze:

dzisiejsze ptaki


Teropody pojawiły najpóźniej ok. 231 Ma (Furin i in., 2006), czyli w późnym (późny karnik wg skali Walkera i Geissmana, 2009 i skali międzynarodowej z 2012 r.) lub środkowym triasie (późny ladyn wg skali międzynarodowej z 2009). Prawdopodobnie wtedy pojawił się najstarszy niewątpliwy teropod - Eodromaeus oraz kolejne dinozaury, które mogą należeć do tej grupy Herrerasaurus oraz Eoraptor); nieco starszy jest herrerazaur Sanjuansaurus (ok. 231,5-231 Ma) (Martínez i in., 2013). Prawdopodobnie istniało już wtedy także 4-5 linii rozwojowych Sauropodomorpha (Chromogisaurus, Panphagia, Saturnalia, klad bardziej zaawansowanych od Guaibasauridae zauropodomorfów oraz Eoraptor, jeśli jest jednym z nich), co wskazuje na to, że teropody i ich najbliżsi krewni oddzielili się od siebie dużo wcześniej (Ezcurra, 2010).

Najstarszym teropodem, lecz już stosunkowo zaawansowanym (takson siostrzany kladu Tawa+Neotheropoda) może być "Thecodontosaurus" alophos z późnego anizyku z RPA. Materiał ten (okaz SAM-PKK10654) został zaliczony do Nyasasaurus parringtoni a analiza zawierająca jako N. parringtoni zarówno jego holotyp, jak i SAM-PKK10654 wykazała, że jest to bazalny przedstawiciel Ornithischia, takson siostrzany Dinosauria lub takson siostrzany kladu Tawa+Neotheropoda (Nesbitt i in., 2013)).

Niepublikowane badania (Dececchi i Larsson, 2007) wskazują, że pierwsze teropody pojawiły się już 5-7 milionów lat wcześniej, a więc ok. 239-235 Ma. Poza Ameryką Południową, domniemane szczątki najstarszych teropodów odkryto w Ameryce Północnej, Europie oraz w Indiach. Do jury przetrwali jedynie przedstawiciele Neotheropoda, formy bardziej bazalne, jak Daemonosaurus, wymarły wcześniej.

Gdzie

Cały świat (kosmopolityczne)


Ponieważ teropody pojawiły się, gdy znane dziś kontynenty tworzyły jeden ląd (Pangeę), to - poza barierami środowiskowymi - nie było przeszkód w ich rozprzestrzenianiu się, lecz w triasie były rzadkie i mało zróżnicowane. W miarę rozpadu masy lądowej postępowała izolacja, lecz niektóre teropody prawdopodobnie zdołały w jakiś sposób dostać się na kontynenty oddzielone morzami (np. wędrując z wyspy do wyspy). Z drugiej strony niektóre grupy cechuje endemizm - lecz jest to często zjawisko trudne do zbadania.

Kladogramy

Yates, 2006

Yates, 2006.jpg

Kladogram z Yates, 2006 (na podstawie Rauhut, 2003 z rozbiciem Megapnosaurus na gatunki, połączeniem celurozaurów bardziej zaawansowanych od Proceratosaurus w jedną jednostkę, wyłączeniem Acrocanthosaurus z Carcharodontosauridae, dodaniem Dracovenator, Masiakasaurus, Dubreuillosaurus, Tugulusaurus i Zupaysaurus oraz 28 nowych cech i rewizją 5).

Smith i in., 2007

Smith i in., 2007 th.jpg

Kladogram ze Smith i in., 2007. Zob. też Mortimer, online [10].

Xu i in., 2009

Xu i in., 2009 th.jpg

Kladogram z Xu i in., 2009 (na podstawie Smith i in., 2007 z dodanymi 59 cechami z Carrano i Sampson, 2008 oraz dodatkowymi taksonami).

Nesbitt i in., 2009

Nesbitt i in., 2009.jpg

Kladogram z Nesbitt i in., 2009. Cyframi oznaczono klady: 72 - Theropoda, 60 - Herrerasauria, 69 - Neotheropoda, 61 - Coelophysoidea, 64 - Averostra, 63 - Tetanurae, 62 - Avetheropoda.

Knoll, 2010

Knoll, 2010.jpg

Kladogram z Knoll, 2010 (na podstawie skupionego na bazalnych zauropodomorfach badania Yatesa, 2007 ze zmianami na podstawie Smith i Pol, 2007 oraz dodanym Ignavusaurus). Inna modyfikacja analizy (dodanie Chromogisaurus, Panphagia i nienazwanego herrerazaura MACN-PV 18649a oraz 15 cech) Smitha i Pola (2007) - dokonana przez Ezcurrę (2010) wskazała, że Agnosphitys i Guaibasaurus są zauropodomorfami, Chindesaurus ma niepewną pozycję wśród Eusaurischia, a do teropodów należy Eoraptor.

Novas i in., 2011

Novas i in 2011ther.PNG

Uproszczony kladogram z Novas i in., 2011 (na podstawie Ezcurra, 2010 z dodanymi taksonami, cechami i innymi zmianami). "Saurop" to Sauropodomorpha.

Martinez i in., 2011 (I)

Martinez i in., 2011.jpg

Kladogram z Martinez i in., 2011 (na podstawie Sereno, 1999 z wieloma zmianami).

Martinez i in., 2011 (II)

Martinez i in 2011 II.PNG

Kladogram z Martinez i in., 2011 (na podstawie Nesbitt i in., 2009 z usunięciem taksonów niedinozaurowych, fragmentarycznych i zaawansowanych teropodów, zmianą Eoraptor i Herrerasaurus).

Sues i in., 2011

Sues i in. 2011.GIF

Kladogram z Sues i in., 2011 (na podstawie Nesbitt i in., 2009 z dodanym Daemonosaurus i czterema nowymi cechami).

Langer i in., 2011

Langer i in., 2011.jpg

Kladogramy z Langer i in., 2011 (na podstawie Nesbitt i in., 2009 z dodanym Guaibasaurus). Na lewo wersja niezmodyfikowana, na prawo z 6 nowymi cechami i usuniętymi nieistotnymi taksonami.

Nesbitt, 2011

Nesbitt, 2011.jpg

Kladogram z Nesbitt, 2011.

Ezcurra i Brusatte, 2011

Ezcurra i Brusatte, 2011.jpg

Skalibrowany stratygraficznie kladogram z Ezcurra i Brusatte, 2011 (na podstawie Nesbitt i in., 2009 z dodanymi Camposaurus i Megapnosaurus rhodesiensis oraz 24 nowymi cechami).

Cau i in., 2012B

Cau i in. 2012 Sauroniops therop.PNG

Kladogram z Cau i in., 2012B (na podstawie Cau i in., 2012A z dodanymi 9 cechami i zmianą 4).

Nesbitt i in., 2013

Nesbitt 2013 Nyasasaurus.PNG

Kladogramy z Nesbitt i in., 2013. Na górze Nyasasaurus zakodowany jako oba okazy - holotyp i typowy okaz "Thecodontosaurus" alophos - na dole tylko ten drugi.

Langer i in., 2014

Langer i in. 2014 Tachiraptor.PNG

Langer i in. 2014 Tachiraptor Brusatte.png

Kladogramy z Langer i in., 2014: u góry - skalibrowany stratygraficznie na podstawie Xu i in. (2009) z dodanym Tachiraptor i usunięciem jednej cechy, na dole - majority rule na podstawie Smith i in. (2007) z dodanym Tachiraptor i rewizją cech za Brusatte i in. (2010A).

Lee i in., 2014

Lee i in., 2014(I)

Lee i in. 2014 miniaturization basal.PNG

Skalibrowany stratygraficznie (prócz Majungasaurus i Masiakasaurus, które przesunięto dla oszczędności miejsca) kladogram z Lee i in., 2014 (na podstawie Godefroit i in., 2013, z dodanymi 49 cechami i 28 taksonami i usunięciem 9 fragmentarycznych).

Lee i in., 2014(II)

Lee i in. 2014 miniaturization basal II.PNG

Skalibrowany stratygraficznie kladogram z Lee i in., 2014 (na podstawie Xu i in., 2012, z dodanymi 49 cechami i 28 taksonami i usunięciem 9 fragmentarycznych).

You i in., 2014

You i in. 2014 Panguraptor.PNG

Kladogram z You i in., 2014 (na podstawie Ezcurra i Brusatte, 2011, z dodanym Panguraptor i modyfikacją dwóch cech u "Megapnosaurus" kayentakatae).

Niepublikowane

Tykoski, 2005

Tykoski, 2005.jpg

Kladogram z Tykoski, 2005 - konsensus Adamsa. W ścisłym konsensusie politomię tworzyły: celofyzydy (Coelophysis, Megapnosaurus, "M." kayentakatae, Segisaurus i nienazwany takson Shake-N-Bake), Eustreptospondylus u podstawy Tetanurae i Abelisaurus u podstawy Abelisauridae. Cienką linią zaznaczono pozycje w ścisłym konsensusie niekompletnych i potencjalnie niediagnostycznych taksonów, które dodawano do właściwej analizy osobno.

Cau, online 1

Cau, online 1.JPG

Kladogram z Cau, online 1 [11]. "Unnaned Chile Taxon" to nienazwany teropod z późnej jury Chile (Salgado i in., 2008).

Cau, online 2

Cau, online 2.JPG

Kladogram z Cau, online 2 [12].

Cau, online 3

Cau, online 3.JPG

Kladogram z Cau, online 3 [13].

Bibliografia

Publikacje naukowe:

Agnolin, F.L., Ezcurra, M.D., Pais, D.F. & Salisbury, S.W. (2010) "A reappraisal of the Cretaceous non-avian dinosaur faunas from Australia and New Zealand: evidence for their Gondwanan affinities" Journal of Systematic Palaeontology 8, 257-300.

Alcober, O.A., Martinez, R.N. (2010) "A new herrerasaurid (Dinosauria, Saurischia) from the Upper Triassic Ischigualasto Formation of northwestern Argentina" ZooKeys, 63, 55-81. doi:10.3897/zookeys.63.550

Allain, R., Vullo, R., Le Loeuff, J., Tournepiche, J.-F. (2014) "European ornithomimosaurs (Dinosauria, Theropoda): an undetected record" Geologica Acta, 12(2), 127-135. doi:10.1344/105.000002083

Balter, M. (2011) "Pint-Sized Predator Rattles The Dinosaur Family Tree" Science, 331(6014), 134. doi: 10.1126/science.331.6014.134

Barrett, P.M., Butler, R.J. & Nesbitt, S.J. (2011) "The roles of herbivory and omnivory in early dinosaur evolution" Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 101, 383-396. doi: 10.1017/S1755691011020111

Benson, R.B.J. (2010) "The osteology of Magnosaurus nethercombensis (Dinosauria, Theropoda) from the Bajocian (Middle Jurassic) of the United Kingdom and a re-examination of the oldest records of tetanurans" Journal of Systematic Palaeontology 8, 131-146.

Brusatte, S.L., Benson, R.B.J., Currie, P.J. & Zhao, X.-J. (2010A) "The skull of Monolophosaurus jiangi (Dinosauria: Theropoda) and its implications for early theropod phylogeny and evolution" Zoological Journal of the Linnean Society, 158, 573-607.

Brusatte, S. L., Nesbitt, S. J., Irmis, R. B., Butler, R. J., Benton, M. J. & Norell, M. A. (2010B) "The origin and early radiation of dinosaurs" Earth-Science Reviews, 101, 68-100.

Cabreira, S.F., Schultz, C.L., Bittencourt, J.S., Soares, M.B., Fortier, D.C., Silva, L.R. & M.C. Langer (2011) "New stem-sauropodomorph (Dinosauria, Saurischia) from the Triassic of Brazil" Naturwissenschaften, 98(12), 1035-1040. doi: 10.1007/s00114-011-0858-0

Carrano, M.T. Hutchinson, J.R. & Sampson, S.D. (2005) "New information on Segisaurus halli, a small theropod dinosaur from the Early Jurassic of Arizona" Journal of Vertebrate Paleontology, 25, 835-849.

Carrano, M.T., Benson, R.B.J. & Sampson, S.D. (2012) "The phylogeny of Tetanurae (Dinosauria: Theropoda)" Journal of Systematic Palaeontology, 10(2), 211-300. doi: 10.1080/14772019.2011.630927

Cau, A., Dalla Vecchia, F.M. & Fabbri, M. (2012A) "Evidence of a new carcharodontosaurid from the Upper Cretaceous of Morocco" Acta Palaeontologica Polonica, 57(3), 661-665. doi:10.4202/app.2011.0043

Cau, A., Dalla Vecchia, F.M. & Fabbri, M. (2012B) "A thick-skulled theropod (Dinosauria, Saurischia) from the Upper Cretaceous of Morocco with implications for carcharodontosaurid cranial evolution" Cretaceous Research. doi:10.1016/j.cretres.2012.09.002

Choiniere, J.N., Xu, X., Clark, J.M., Forster, C.A., Guo, Y. & Han, F. (2010) "A Basal Alvarezsauroid Theropod from the Early Late Jurassic of Xinjiang, China" Science, 327, 571-57

Costa da Silva, R., Barboni, R., Dutra, T., Godoy, M.M. & Binotto, R.B. (2012) "Footprints of large theropod dinosaurs and implications on the age of Triassic biotas from Southern Brazil" Journal of South American Earth Sciences, 39, 16-23. doi:10.1016/j.jsames.2012.06.017

Ezcurra, M. D. (2010) "A new early dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Argentina: a reassessment of dinosaur origin and phylogeny" Journal of Systematic Palaeontology, 8, 371-425.

Ezcurra, M.D. & Brusatte, S.L. (2011) "Taxonomic and phylogenetic reassessment of the early neotheropod dinosaur Camposaurus arizonensis from the Late Triassic of North America" Palaeontology, 54, 763-772. doi: 10.1111/j.1475-4983.2011.01069.x

Ezcurra, M.D. & Cuny, G. (2007) "The coelophysoid Lophostropheus airelensis, gen. nov.: a review of the systematics of "Liliensternus"airelensis from the Triassic-Jurassic boundary outcrops of Normandy (France)" Journal of Vertebrate Paleontology, 27, 73-86.

Ezcurra, M.D. & Novas, F.E. (2007) "Phylogenetic relationships of the Triassic theropod Zupaysaurus rougieri from NW Argentina" Historical Biology, 19, 35-72.

Godefroit, P., Cau, A., Hu, D.-Y., Escuillié, F., Wu, W., & Dyke, G. (2013) "A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds" Nature, 498(7454), 359-362. doi:10.1038/nature12168

Holtz, T.R. (2012) "Theropods" w: Brett-Surman, M.K., Holtz, T.R. & Farlow, J.O. (red.) "The Complete Dinosaur" Indiana University Press, 347-378.

Knoll, F. (2010) "A primitive sauropodomorph from the upper Elliot Formation of Lesotho" Geological Magazine, 147, 814-829. doi:10.1017/S001675681000018X

Langer, M. C. (2004) "Basal Saurischia" [w:] Weishampel, D.B., Dodson, P. & Osmólska, H. "The Dinosauria" Berkeley and Los Angeles: University of California Press, 25-46.

Langer, M.C., Bittencourt, J.S. & Schultz, C.L. (2011) "A reassessment of the basal dinosaur Guaibasaurus candelariensis, from the Late Triassic Caturrita Formation of south Brazil" Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 101, 301-332. doi:10.1017/S175569101102007X

Langer, M.C., Ezcurra, M.D., Bittencourt, J.S. & Novas, F.E. (2009) "The origin and early evolution of dinosaurs" Biological Reviews, 84(1), 1-56. doi:10.1111/j.1469-185X.2009.00094.x

Langer, M.C., Rincón A.D., Ramezani J., Solórzano A. & Rauhut, O.W.M. (2014) "New dinosaur (Theropoda, stem-Averostra) from the earliest Jurassic of the La Quinta formation, Venezuelan Andes" Royal Society Open Access Science, 1, 140184. doi:10.1098/rsos.140184

Lee, M.S.Y., Cau, A., Naish, D. & Dyke, G.J. (2014) "Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds" Science, 345(6196), 562-566. doi:10.1126/science.1252243

Martinez, R.N., Sereno, P.C., Alcober, O.A., Colombi, C.E., Renne, P.R., Montañez, I.P. & Currie, B.S. (2011) "A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea" Science, 331, 206-210. doi:10.1126/science.1198467

Martínez, R.N., Apaldetti, C., Alcober, O.A., Colombi, C.E., Sereno, P.C., Fernandez, E., Santi Malnis, P., Correa G.A. & Abelin, D. (2013) "Vertebrate succession in the Ischigualasto Formation" Journal of Vertebrate Paleontology, 32(6 - supplement, Memoir 12, "Basal sauropodomorphs and the vertebrate fossil record of the Ischigualasto Formation (Late Triassic: Carnian-Norian) of Argentina"), 10-30. doi:10.1080/02724634.2013.818546

Nesbitt, S.J. (2011) "The early evolution of archosaurs : relationships and the origin of major clades" Bulletin of the American Museum of Natural History, 352, 1-292. doi:10.1206/352.1

Nesbitt, S.J., Irmis, R.B. & Parker, W.G. (2007) "A critical re-evaluation of the Late Triassic dinosaur taxa of North America" Journal of Systematic Palaeontology, 5, 209-243.

Nesbitt, S.J., Smith, N.D., Irmis, R.B., Turner, A.H., Downs, A. & Norell, M.A. (2009) "A complete skeleton of a Late Triassic saurischian and the early evolution of dinosaurs" Science, 326, 1530-1533.

Nesbitt, S.J., Sidor, C.A., Irmis, R.B., Angielczyk, K.D., Smith, R.M.H. & Tsuji, L.M.A. (2010) "Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira" Nature 464, 95-98.

Nesbitt, S.J., Barrett, P.M., Werning, S., Sidor, C.A. & Charig, A.J. (2013) "The oldest dinosaur? A Middle Triassic dinosauriform from Tanzania" Biology Letters, 9(1), 20120949. doi:10.1098/rsbl.2012.0949

Niedźwiedzki, G., Gorzelak, P. & Sulej, T. (2010) "Bite traces on dicynodont bones and the early evolution of large terrestrial predators" Lethaia, 44(1), 87–92. doi:10.1111/j.1502-3931.2010.00227.x

Niedźwiedzki, G., Brusatte, S.L., Sulej, T. & Butler, R.J. (2014) "Basal dinosauriform and theropod dinosaurs from the mid–late Norian (Late Triassic) of Poland: implications for Triassic dinosaur evolution and distribution" Palaeontology. doi:10.1111/pala.12107

Novas, F.E., Ezcurra, M.D., Chatterjee, S. & Kutty, T.S. (2011) "New dinosaur species from the Upper Triassic Upper Maleri and Lower Dharmaram formations of central India" Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 101(3-4), 333-349. doi:10.1017/S1755691011020093

Rauhut, O.W.M. (2012) "A reappraisal of a putative record of abelisauroid theropod dinosaur from the Middle Jurassic of England" Proceedings of the Geologists' Association, doi:10.1016/j.pgeola.2012.05.008

Rauhut, O.W.M., Foth, C., Tischlinger, H. & Norell, M.A. (2012) "Exceptionally preserved juvenile megalosauroid theropod dinosaur with filamentous integument from the Late Jurassic of Germany" Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1203238109

Salgado, L., De la Cruz, R., Suarez, M., Fernandez, M., Gasparini, Z., Palma-Heldt, S. & Fanning, M. (2008) "First Late Jurassic Dinosaur Bones from Chile" Journal of Vertebrate Paleontology, 28, 529-534.

Sander, P.M., Christian, A., Clauss, M., Fechner, R., Gee, C.T., Griebeler, E.-M., Gunga, H.-C., Hummel, J., Mallison, H., Perry, S.F., Preuschoft, H., Rauhut, O.W.M., Remes, K., Tütken, T., Wings, O. & Witzel, U. (2011) "Biology of the sauropod dinosaurs: the evolution of gigantism" Biological Reviews, 86(1), 117–155. doi: 10.1111/j.1469-185X.2010.00137.x

Sereno, P.C. (2007) "The phylogenetic relationships of early dinosaurs: a comparative report" Historical Biology, 19, 145-155.

Sereno, P.C. & Novas, F.E. (1992) "The complete skull and skeleton of an early dinosaur" Science, 258, 1137-1140.

Sereno, P.C., Martínez, R.N. & Alcober, O.A. (2013) "Osteology of Eoraptor lunensis (Dinosauria, Sauropodomorpha)" Journal of Vertebrate Paleontology, 32(6 - supplement, Memoir 12, "Basal sauropodomorphs and the vertebrate fossil record of the Ischigualasto Formation (Late Triassic: Carnian-Norian) of Argentina"), 83–179. doi:10.1080/02724634.2013.820113

Smith, N.D., Makovicky, P.J., Pol, D., Hammer, W.R. & Currie, P.J. (2007) "Osteology of Cryolophosaurus ellioti (Dinosauria: Theropoda) from the Early Jurassic of Antarctica and implications for early theropod evolution" Zoological Journal of the Linnean Society, 151, 377-421.

Sues, H.-D., Nesbitt, S.J., Berman, D.S. & Henrici, A.C. (2011) "A late-surviving basal theropod dinosaur from the latest Triassic of North America" Proceedings of the Royal Society B, 278, 1723, 3459-3464. doi:10.1098/rspb.2011.0410

Therrien, F. & Henderson, D.M. (2007) "My theropod is bigger than yours...or not: estimating body size from skull length in theropods" Journal of Vertebrate Paleontology, 27, 108-115.

Tykoski, R.S. & Rowe, T. (2004) "Ceratosauria" [w:] Weishampel, D.B., Dodson, P. & Osmólska, H. "The Dinosauria" Berkeley and Los Angeles: University of California Press, 151-168.

Wu, X., Currie, P.J., Dong, Z., Pan, S. & Wang, T. (2009) "A new theropod dinosaur from the Middle Jurassic of Lufeng, Yunnan, China" Acta Geologica Sinica 83(1), 9-24. doi:10.1111/j.1755-6724.2009.00002.x

Xu, X., Clark, J.M., Mo J., Choiniere, J., Forster, C.A., Erickson, G.M., Hone, D.W.E., Sullivan, C., Eberth, D.A., Nesbitt, S., Zhao, Q., Hernandez, R., Jia, C., Han, F. & Guo, Y. (2009) "A Jurassic ceratosaur from China helps clarify avian digital homologies" Nature, 459, 940-944.

Xu, X., Wang, K., Zhang, K., Ma, Q., Xing, L., Sullivan, C., Hu, D., Cheng, S. & Wang, S. (2012B) "A gigantic feathered dinosaur from the Lower Cretaceous of China" Nature, 484, 92-95. doi:10.1038/nature10906

Yates, A.M. (2006) "A new theropod dinosaur from the Early Jurassic of South Africa and its implications for the early evolution of theropods" Palaeontologia Africana, 41, 105-122.

You, H.-L., Azuma, Y., Wang, T., Wang, Y.-M. & Dong, Z-H. (2014) "The first well-preserved coelophysoid theropod dinosaur from Asia" Zootaxa, 3873(3), 233-249. doi:10.11646/zootaxa.3873.3.3

Inne:

Dececchi, T. & Larsson, H. (2007) "Tempos and models of theropod evolution" Journal of Vertebrate Paleontology, 27, 67A [abstrakt]

Novas, F.E. & Ezcurra, M.D. (2011) "Phylogenetic relationships of basal saurischians: testing the evidence for the herrerasaurian affinities of Tawa" Ameghiniana, 48(4) (suplement), R118-R119 [abstrakt]

Tykoski, R.S (2005) "Anatomy, Ontogeny, and Phylogeny of Coelophysoid Theropods" Dysertacja doktorska, University of Texas

Dowiedz się więcej

  • o zwierzętach, które mogły być teropodami:
Agnosphitys, Alwalkeria, "Beelemodon", "Capitalsaurus", Eoraptor, Guaibasaurus, "Katsuyamasaurus", "Newtonsaurus", Nyasasaurus, Protoavis, Sinocoelurus, Sinosaurus, Smok, Velocipes
 ??Chindesaurus, Herrerasaurus, ?Staurikosaurus, Sanjuansaurus
  • bazalnych teropodach:
*(?)Daemonosaurus, Eodromaeus, Tawa[1]
 ?Cryolophosaurus[2], Dilophosaurus, Dracovenator, Tachiraptor, Zupaysaurus
  • i teropodach o niepewnej pozycji:
Altispinax, "Coelurosaurus", Chienkosaurus, Diplotomodon, Embasaurus, "Futabasaurus", Inosaurus, Labocania, ("Morosaurus" marchei), "Ngexisaurus", ("Ornithocheirus" hilsensis), Ozraptor, "Saltriosaurus", Szechuanosaurus, *(?)Tanystrosuchus, Teinurosaurus, Thecocoelurus, Valdoraptor,'Wakinosaurus, Walgettosuchus

Zob. też artykuły o Coelophysoidea, Ceratosauria i Tetanurae

  1. Może być celofyzoidem.
  2. Może być tetanurem.